
Lincoln Bryant
April 29, 2015

Ceph
Storage for the future

Introduction

● Ceph is a open source, next-generation storage cluster
brought to you by Red Hat

● Scale-out storage with a focus on high availability
○ no single point of failure

● Today, we’ll look at:
○ RADOS, Ceph’s underlying storage engine
○ storage interfaces built on top of RADOS
○ interesting new features in recent versions
○ some of our use cases / ambitions for Ceph

The Reliable, Autonomic Distributed
Object Store (RADOS)

● The Ceph object storage service
● Every disk in a Ceph cluster in managed independently

(via an “object storage daemon”) and communicates
with all other disks via peer-to-peer protocols

● Map of the cluster maintained by a separate daemon
(monitor)
○ map is replicated to all daemons
○ monitors easily made redundant

http://ceph.com/papers/weil-rados-pdsw07.pdf

http://ceph.com/papers/weil-rados-pdsw07.pdf
http://ceph.com/papers/weil-rados-pdsw07.pdf

Controlled Replication Under
Scalable Hashing (CRUSH)

● Ceph’s data distribution algorithm
● Pseudo-random, yet deterministic

○ no central database, object location is calculated on
the fly

● Redundancy is handled by way of object replication
● Data is placed in such a way that minimizes the chance

of simultaneous disk failure
● When the cluster map changes, CRUSH rebalances

the data

http://ceph.com/papers/weil-crush-sc06.pdf

http://ceph.com/papers/weil-crush-sc06.pdf
http://ceph.com/papers/weil-crush-sc06.pdf

Let’s take a look at RADOS and
CRUSH

RADOS in action

node 1 node 2 node 3 node 4

● Suppose we have 4 nodes with 8 disks each
● Our CRUSH replication level is 3
● What happens when we place an object?

RADOS in action

node 1 node 2 node 3 node 4

● Three copies of the data are written across the cluster
● CRUSH will not allow data copies to be co-located on

the same node, as this would be within the same failure
domain

RADOS in action

node 1 node 2 node 3 node 4

● Now suppose one of our machines dies

RADOS in action

node 1 node 2 node 3 node 4

● Now suppose one of our machines dies
● The failure is detected by the node’s peers and the

CRUSH map is updated

I think node
4 is down

Me too

RADOS in action

node 1 node 2 node 3 node 4

● Now suppose one of our machines dies
● The failure is detected by the node’s peers and the

CRUSH map is updated
● Recovery operations automatically begin

RADOS in action

node 1 node 2 node 3 node 4

● The Ceph cluster reports to the administrator that the
cluster is in “Degraded state” (HEALTH_WARN)

● Once the number of copies is again 3, the cluster
returns to a healthy state (HEALTH_OK)

RADOS in action

node 1 node 2 node 3 node 4

● Finally, if the failed disk or node recover on their own,
the CRUSH map is returned to the original state

● The extra copy of data is deleted
Hey
dudes

RADOS in action

node 1 node 2 node 3 node 4

● Objects are stored in buckets called placement groups
● In the toy example, we only look at one placement

group
● In reality, a Ceph cluster is dealing with many

placement groups simultaneously

What kind of awesome stuff has
been built on top of RADOS?

The many tentacles of Ceph

● Reliable, fault tolerant, distributed object storage allows
for many interesting interfaces

● Four pillars:
○ Programming API (Librados)
○ RADOS Block Device (RBD)
○ Ceph Filesystem (CephFS)
○ Amazon S3-compatible HTTP Gateway

(RADOSGW)

Programming API - Librados

● Written in C++
● Bindings for C, Python, Java, Erlang and PHP
● Allows for both synchronous and asynchronous I/O
● Other Ceph interfaces are built on top of librados

RADOS Block Device (RBD)

● Kernel driver and userland tools that provide attached
SAN-like storage

● Appears as a normal disk, e.g.,
○ /dev/rbd0
○ mkfs.xfs /dev/rbd0

● Used by a lot of Openstack deployments to provide
block storage for VMs

HTTP REST Gateway (RADOSGW)

● FastCGI module (mod_fastcgi)
● Two interfaces:

○ Amazon S3 compatible
○ OpenStack Swift compatible

● Supports federating and asynchronous replication
● Interesting possibilities for multi-data center

deployments

Ceph Filesystem (CephFS)

● Concurrent, POSIX-compliant network file system
○ Users expect this!

● Additional daemon for metadata (MDS)
○ Manages filesystem namespace
○ Single active MDS recommended, multi-MDS

possible
● Recommended Kernel 3.14+

○ Rumblings on the mailing list about a 3.10 port of
the newer code?

● Not yet production ready, but soon (™)!
○ Primarily lacking any kind of ‘fsck’ tool

Other cool stuff coming down the
pipe

Plugins!

● Ceph Hadoop plugin
○ for all of your MapReduce needs
○ replaces HDFS with CephFS

● Ceph XRootD plugin
○ Allows Ceph to be the storage behind an XRootD

server
○ XRootD is extremely popular in our community, so

we’re very interested

Erasure coding

● Replication uses lots of disk!
○ 3x replication = 300% overhead

● Enter Erasure Coding
○ Uses forward error correction techniques to “RAID”

objects in your cluster
● Overhead becomes more like 20-30%
● However, I/O are more network and CPU intensive as a

result
○ In our testing, erasure coded pools had 40% of the

performance of replicated pools

Cache tiering

● Allows RADOS pools to be tiered into “hot” storage and
“cold” storage

● Completely transparent to clients
● Cache can be resized on demand
● Potential use cases

○ SSD-based cache, slow rotational disks for backing
store

○ Replicated cache, erasure-coded backing store

Wrapping up

In summary...

● Ceph is an open source, self-healing, scalable storage
cluster for big data!

● Provides a programming API with bindings to many
languages

● Offers block device, network filesystem, and REST
interfaces for cloud storage

● Efficient storage with erasure coding and cache tiering

Thank you!
Questions?

